A robust approach for iterative contaminant source location and release history recovery.
نویسندگان
چکیده
Contamination source identification is a crucial step in environmental remediation. The exact contaminant source locations and release histories are often unknown due to lack of records and therefore must be identified through inversion. Coupled source location and release history identification is a complex nonlinear optimization problem. Existing strategies for contaminant source identification have important practical limitations. In many studies, analytical solutions for point sources are used; the problem is often formulated and solved via nonlinear optimization; and model uncertainty is seldom considered. In practice, model uncertainty can be significant because of the uncertainty in model structure and parameters, and the error in numerical solutions. An inaccurate model can lead to erroneous inversion of contaminant sources. In this work, a constrained robust least squares (CRLS) estimator is combined with a branch-and-bound global optimization solver for iteratively identifying source release histories and source locations. CRLS is used for source release history recovery and the global optimization solver is used for location search. CRLS is a robust estimator that was developed to incorporate directly a modeler's prior knowledge of model uncertainty and measurement error. The robustness of CRLS is essential for systems that are ill-conditioned. Because of this decoupling, the total solution time can be reduced significantly. Our numerical experiments show that the combination of CRLS with the global optimization solver achieved better performance than the combination of a non-robust estimator, i.e., the nonnegative least squares (NNLS) method, with the same solver.
منابع مشابه
A constrained robust least squares approach for contaminant release history identification
[1] Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving un...
متن کاملA Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm
The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...
متن کاملA robust geostatistical approach to contaminant source identification
[1] Estimation under model uncertainty remains a practical concern in many scientific and engineering fields. A commonly encountered example in groundwater remediation is the contaminant source identification problem. Like many other inverse problems, contaminant source identification is inherently ill posed and is sensitive to both data and model uncertainties. Model uncertainties, which may b...
متن کاملState of the Art Report on Mathematical Methods for Groundwater Pollution Source Identification
1527 *Fa {Fa The reliable assessment of hazards or risks arising from groundwater contamination problems and the design of ecient and eective techniques to mitigate these problems require the capability to predict the behavior of chemical contaminants in ̄owing water. Most attempts at quantifying contaminant transport have relied on a solution of some form of a well-known governing equation re...
متن کاملA Robust Scenario Based Approach in an Uncertain Condition Applied to Location-Allocation Distribution Centers Problem
The paper discusses the location-allocation model for logistic networks and distribution centers through considering uncertain parameters. In real-world cases, demands and transshipment costs change over the period of the time. This may lead to large cost deviation in total cost. Scenario based robust optimization approaches are proposed where occurrence probability of each scenario is not know...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of contaminant hydrology
دوره 88 3-4 شماره
صفحات -
تاریخ انتشار 2006